Four camera-lens options for bird photography (Canon, Spring 2023)

No-one asked for this, but I will provide some bird/wildlife photography gear suggestions below, anyways. This is only focused on the Canon options, because that is where I have my personal experience. (Canon is the leading camera manufacturer, but many other probably have somewhat similar options.) The use-case and price are major factors, so I have estimated those (quoted prices are something that I could find currently here in Finland). Any comments are welcome! 😊

Beginner / occasional nature photographer’s suggested option:

  • Canon EOS R50 / M50 Mark II & Sigma 150-600mm f/5-6,3 DG OS HSM Contemporary
  • Price: 1748 euros = 669 euros (M50m2) + 1079 euros (Sigma150-600) (Note: the new R50 will be priced here at c. 879 euros)
  • Pros: over 24 megapixels, APS-C (with 1.6x crop) brings wildlife closer; Dual Pixel autofocus is generally good and pretty fast. Simple and easy to use.
  • Cons: these entry-level cameras are pretty small, ergonomics is not good, there is no wheel or joystick control, one must use the touch screen to move fast the AF area while taking photos; the Sigma lens provides good reach (225-960mm in full-frame terms), but it needs an EF-adapter, and it is slower and more uncertain to focus than a true, modern Canon RF-mount lens. And frankly, these cameras are optimized for taking photos of people rather than birds or wildlife, but they can be stretched for it, too. (This is where I started when I moved from more general photography to bird-focused nature photography, three years ago.)

Travelling, and weekend nature photographer’s suggested option:

  • Canon EOS R7 & RF 100-400mm f/5.6-8 IS USM
  • Price: 2448 euros = 1699 euros (R7) + 749 euros (RF100-400)
  • Pros: R7 is a very lightweight, yet capable camera – it has 33-megapixel APS-C sensor, the new Digic X processor, a blazingly fast 30 fps electronic shutter, two SDXC UHS-II card slots, IBIS (image stabilization), Dual Pixel AF II with animal eye-focus, and even some weather sealing.
  • Cons: the 651 AF focus points is good, but not pro-level; the camera will every now and then fail to lock focus. The sensor read speed is slow, leading to noticeable “rolling shutter” distortion effects, relating to camera movement during shooting. One needs to shoot more frames, to get some that are distortion-free. There is also only one control wheel, set in “non-standard” position around the joystick. RF100-400 lens is a really nice “walkaround lens” for R7 (it is 160-640mm in full-frame terms). But if the reach is the key priority rather than mobility, then one could consider a heavier option, like the Sigma 150-600mm above.

Enthusiast / advanced hobbyist option:

  • Canon EOS R5 & RF 100-500mm f/4.5-7.1 L IS USM
  • Price: 6939 euros = 3700 euros (R5, a campaign price right now) + 3239 euros (RF100-500)
  • Pros: R5 is already a more pro-level tool; it is weather sealed, has a 45-megapixel sensor, Digic X, 20 fps, IBIS, animal eye-focus with 5940 focus points, dual slots (CFexpress Type B, & SD/SDHC/SDXC), etc.
  • Cons: this combination is much heavier to carry around than the above, R7 one (738+1365g vs. 612+635g). There will probably be a “Mark II” of R5 coming within a year or so (the AF system and some features are already “old generation” as compared to R3 / R7). The combination of full-frame sensor and max 500mm focal length means that far-away targets will be rather small in the viewfinder; the 45-megapixel sensor will provide considerable room for cropping in editing, though.

Working professional / bathing-in-money option:

  • Canon EOS R3 & RF 600mm F4 L IS USM
  • Price: 19990 euros = 5990 euros (R3) + 14000 euros (RF600)
  • Pros: new generation back-illuminated, stacked sensor (24 megapixels), max 30 fps, max ISO 204800, Digic X, new generation eye-controlled AF, enhanced subject tracking, 4779 selectable AF points, etc.
  • Cons: R3 is the current “flagship” of Canon mirrorless systems, but in terms of pixel count, it is behind R5. Some professionals prefer the speed and more advanced autofocus system of R3, while some use R5 because it allows more sharp pixels / room for cropping in the editing phase. The key element here is the (monstrously sized) professional 600mm f/4 prime lens. The image quality and subject separation is beyond anything that the more reasonably priced lenses can offer. The downside is that these kinds of lenses are huge, require mounting them on a tripod pretty much always when you shoot, and the price, of course, puts these out of question for most amateur nature photographers. (Note: as a colleague commented, these large lenses can also be found used sometimes, for much cheaper, if one is lucky.)

And there are, of course, ways of mixing and combining cameras and lenses in many other ways, too, but these are what I consider notable options that differ clearly in terms of use-case (and pricing).

(Photo credit: Canon / EOS Magazine.)

My old camera

I wanted to revisit my old gear tonight, so I dug up my trusty EOS 550D, coupled with the BG-E8 battery grip and the classic, Canon 70-200mm f4L USM lens. The Friendly Cat provided again the modelling services.

I was immediately reminded by the obvious strengths of this older, bigger camera body: the ergonomics are just so much better when you can really hold the camera comfortably and steadily in your hand, and have large, mechanical control knobs that you can quickly and effortlessly experiment with.

On the other hand, the limitations were again also immediately obvious; in particular, the mirrorless digital camera (EOS M50) that I am mostly using these days allows one seamlessly move from using the viewfinder to the live view in the rear display, while making the composition. 550D also has rear display live view, but you need to specifically switch it on, and it is slow and imprecise, and the autofocus in particular is just terrible when shooting with it.

The optical viewfinder, on the other hand, is excellent, and the very limited nine (9) AF points do their job just well enough for this kind of slow “portrait” work. The low maximum ISO of 6400 also does not matter when taking pictures under the bright evening sun, and sharpness of that old Canon L lens fits nicely the 18-megapixel image sensor’s resolution capabilities.

Thus, if I would think about a “perfect camera” for my use, I would be happy with current M50 image sensor resolution (24,1 megapixels), but I would be really happy for a bit more capable autofocus system, and for more low-light performance in particular. The single most beneficial upgrade could however be a body with larger physical dimensions, with better/larger mechanical controls for selecting the program mode, aperture, and making the other key adjustments.

While the new EOS R series Canon cameras provide exactly that, the issue for me is that those are full frame cameras; and I am very happy in taking my photos with APS-C (the “crop sensor”). Full frame lenses, and new Canon RF lenses in particular, tend to be both large and expensive to a degree that does not make much sense for my kind of “Sunday photographer”.

There are alternatives like Fujifilm, with their excellent APS-C camera bodies (X-T30, X-T4, for example), and their sharp and relatively compact and affordable lenses. But I am deeply invested in the Canon ecosystem – it would be so much easier if Canon would come up with a well-designed camera like Canon 7D Mark II, but updated and upgraded into current, mirrorless sensors’ and image processors’ capabilities. One can always make wishes? Happy weekend, everyone!

Enlightened by Full Frame?

Magpie (Harakka), 15 February, 2020.

I have long been in Canon camp in terms of my DSLR equipment, and it was interesting to notice that they announced last week a new, improved full frame mirrorless camera body: EOS R5 (link to official short annoucement). While Canon was left behind competitors such as Sony in entering the mirrorless era, this time the camera giant appears to be serious. This new flagship is promised to feature in-body image stabilization that “will work in combination with the lens stabilization system” – first in Canon cameras. Also, while the implementations of 4k video in Canon DSLRs have left professionals critical in past, this camera is promised to feature 8k video. The leaks (featured in sites like Canon Rumors) have been discussing further features such as a 45mp full frame sensor, 12/20fps continuous shooting, and Canon also verified a new, “Image.Canon” cloud platform, which will be used to stream photos for further editing live, while shooting.

Hatanpää, 15 February 2020.

But does one really need a system like that? Aren’t cameras already good enough, with comparable image quality available at fraction of the cost (EOS R5 might be in 3500-4000 euros range, body only).

In some sense such critique might be true. I have not named the equipment I have used for shooting the photos featured in this blog post, for example – some are taken with my mirrorless systems camera, some are coming from a smartphone camera. For online publishing and hobbyist use, many contemporary camera systems are “good enough”, and can be flexibly utilized for different kinds of purposes. And the lens is today way more important element than the camera body, or the sensor.

Standing in the rain. February 15, 2020.

Said that, there are some elements where a professional, full frame camera is indeed stronger than a consumer model with an APS-C (crop) sensor, for example. It can capture more light into the larger sensor and thus deliver somewhat wider dynamic range and less noise under similar conditions. Thus, one might be able to use higher ISO values and get noise-free, professional looking and sharp images in lower light conditions.

On the other hand, the larger sensor optically means more narrow depth of field – this is something that a portrait photographer working in studio might love, but it might actually be a limitation for a landscape photographer. I do actually like using my smartphone for most everyday event photography and some landscape photos, too, as the small lens and sensor is good for such uses (if you understand the limitations, too). A modern, mirrorless APS-C camera is actually a really flexible tool for many purposes, but ideally one has a selection of good quality lenses to suit the mount and smaller format camera. For Canon, there is striking difference in R&D investments Canon have made in recent years into the full frame, mirrorless RF mount lenses, as compared to the “consumer line” M mount lenses. This is based on business thinking, of course: the casual photographers are changing into using smartphones more and more, and there is smaller market and much tighter competition left in the high-end, professional and serious enthusiast lenses and cameras, where Canon (and Nikon, and many others) are hoping to make their profits in the future.

Thus: more expensive professional full frame optimised lenses, and only few for APS-C systems? We’ll see, but it might indeed be that smaller budget hobbyists (like myself) will need to turn towards third-party developers for filling in the gaps left by Canon.

Systems in the rain…

One downside of the more compact, cheaper APS-C cameras (like Canon M mount systems) is that while they are much nicer to carry around, they do not have as good ergonomics and weather proofing as more pro-grade, full frame alternatives. This is aggravated in winter conditions. It is sometimes close to impossible to get your cold, gloved fingers to strike the right buttons and dials when they are as small as in my EOS M50. The cheaper camera bodies and lenses are also missing the silicone seals and gaskets that are typically an element that secures all connectors, couplings and buttons in a pro system. Thus, I get a bit nervous when outside with my budget-friendly system in a weather like today. But, after some time spent in careful wiping and cleaning, everything seems to continue working just fine.

Joining the company. 15 February, 2020.

Absolute number one lesson I have learned in these years of photography, is that the main limitation of getting great photos is rarely in equipment. There are more and less optimal, or innovative, ways of using same setup, and with careful study and experimentation it is possible to learn ways of working around technical limitations. The top-of-the-line, full frame professional camera and lenses system might have wider “opportunity space” for someone who has learned how to use it. But with additional complexity, heavy and expensive elements, those systems also have their inevitable downsides. – Happy photography, everyone!

Compact lenses, great photos?

Sports and wildlife photographers in particular are famous (or notorious) for investing in and carrying around lenses that are often just huge: large, long, and heavy. Is it possible to take great photos with small, compact lenses, or is an expensive and large lens the only option for a hobbysist photographer who’d want to reach better results?

Winter details, captured with Canon EOS M50, and the kit lens: EF-M 15-45mm f/3.5-6.3 IS STM.

I am by no means an authority in optics or lens design, but I think certain key principles are important to take into consideration.

Perhaps one of the first ones is the style of photography one is engaged with. Are you shooting portrait photos indoors, or even in a studio? Or, are you tripping outdoors, trying to get closeup photos of elusive birds and animals? Or, are you rather a landscape photographer? Or, a street photographer?

Sometimes the intended use of photos is also a factor to consider. Are these party photos, or something that you’ll aim to share mostly among your friends in social media? Or, is this that important photo art project that you aim output into large-format prints, and hang to your walls – or, in to a gallery even?

These days, digital camera sensors are “sharp” enough for pretty much any purpose – one of my smartphones, Huawei Mate 20 Pro, for example, has a 40 megapixel main photo sensor, with 7296 × 5472 native resolution. That is more than what you need for a large poster print (depending on viewing distances and PPI settings, a 4000 x 6000 pixels, or even 2000 x 3000 pixels might be enough for a poster print). There are many professional photographers who took their commercial photos for years with cameras that had only 6 or 8 megapixel sensors. And many of those photos were reproduced in large posters, or in covers of glossy magazines, and no-one complained.

Frozen grass, photographed using Huawei Mate 20 Pro smartphone.

The lens and quality of optics are more of a bottleneck: if the lens is “soft”, meaning that it is not capable of focusing all rays of light in consistent, sharp manner, there is no way of achieving very clear looking images with that. But truth be told, in perhaps 90 % of cases with blurry photos, I blame myself rather than my equipment these days. There are badly focused photos, I had a wrong aperture setting or too long exposure time (and was not using a tripod but shooting handheld) and all that contributes to getting a lot of blurry looking photos.

But it is also true, that if one is trying to achieve very high quality results in terms of optical quality, using a more expensive lens is usually something that many people will do. But actually there are “mainstream” photography situations where a cheap lens will produce results that are just – good enough. It is particularly the more extreme situations, where one is for example trying to get a really lot of light into the lens, to capture really detailed scenes in a very consistent manner, where large, heavy and expensive lenses come to play a role. This is also true of portraiture, where a high-quality lens is also used to deliver good separation of person from the background, and the glass elements, their positioning and the aperture blades are designed to produce particularly nice looking “bokeh” effect (the out-of-focus highlights are blurred in an aesthetically pleasing manner). And of course those bird and wildlife photographers value their well-designed, long telephoto range lenses that also capture a lot of light, thereby enabling the photographer to use short enough exposure times and get sharp images of even moving targets.

A cropped detail, photo taken with SIGMA 150-600 mm f/5-6,3 DG OS HSM Contemporary tele-zoom lens on a dim winter’s day.

In many cases it is actually other characteristics rather than the optical image quality that makes a particular lens expensive. It might be the mechanical build quality, weather-proofing, or the manner the focusing, zooming and aperture mechanisms, and how control rings are implemented that are something a professional photographer might be willing to pay for, in one of their main tools.

In street photography, for example, there are completely different kind of priorities as compared to wildlife photography, or studio portraiture, where using a solid tripod is common. In a street, one is constantly moving, and also trying not to be very conspicuous while taking photos. A compact camera with a compact lens is good for those kinds of reasons. Also, if the targets are people and views on city streets, a “normal range” lens is usually preferable. A long-range telephoto lens, or very wide-angle lens will produce very different kinds of effects as compared to the visual feel and visual experiences that people usually experience as “normal images”. In a 35 mm film camera, or “full-frame” digital camera, a 50 mm lens is usually considered a normal lens, whereas with a camera equipped with a (Canon) “crop” sensor (APS-C, 22.2 x 14.8 mm sensor size) would require c. 30 mm lens to produce similar field of view for the image as a 50 mm in a full-frame camera. Lenses with this kinds of short focal ranges can be designed to be physically smaller, and can deliver very good image quality for their intended purposes, even while being nicely budget-priced. There are these days many such excellent “prime” lenses (as contrasted to more complex “zoom” lenses) available from many manufacturers.

One should note here that in case of smartphone photography, everything is of course even much more compact. A typical modern smartphone camera might have a sensor of only few millimeters in size (e.g. in popular 1/3″ type, the sensor is 4.8 x 3.6 mm), so actual focal length of the (fixed) lens may be perhaps 4.25 mm, but that translates into a 26 mm equivalent lens field-of-view, in a full-frame camera. This is thus effectively a wide-angle lens that is good for many indoor photography situations. Many smartphones feature a “2x” (or even “5x”) sensor-lens combinations, that can deliver a normal range (50 mm equivalent in full-frame) or even telephoto ranges, with their small mechanical and optical constructions. This is an impressive achievement – it is much more comfortable to put a camera capable of high-quality photography into your back pocket, rather than lug it around in a dedicate backbag, for example.

Icy view was taken with Canon EOS M50, and the kit lens: EF-M 15-45mm f/3.5-6.3 IS STM.

Perhaps the main limitation of smartphone cameras for artistic purposes is that they do not have adjustable apertures. There is always the same, rather small hole where rays of light will enter the lens and finally focus on the image sensor. It is difficult to control the “zone of acceptable sharpness” (or, “depth of field”) with a lens where you cannot adjust aperture size. In fact, it is easy to achieve “hyperfocal” images with very small-sensor cameras: everything in image will be sharp, from very close to infinity. But the more recent smartphones have already slighly larger sensors, and there have already even been experiments to implement adjustable aperture system inside these tiny lenses (Nokia N86 and Samsung Galaxy S9 at least have advertised adjustable apertures). Some manufacturers resort to using algorithmic background blurring to create full-frame camera looking, soft background while still using optically small lenses that naturally have much wider depth of field. When you take a look at the results of such “computational photography” in a large and sharp monitor, the results are usually not as good as with a real, optical system. But, if the main use scenario for such photos is to look at them from small-screen, mobile devices, then – again – the lens and augmentation system together may be “good enough”.

All the photos attached into this blog post are taken with either a compact kit lens, or with a smartphone camera (apart from that single bird photo above). Looking at them from a very high resolution computer monitor, I can find blurriness and all kinds of other optical issues. But personally, I can live with those. My use case in this case did not involve printing these out in poster sizes, and I just enjoyed having a winter-day walk, and taking photos while not carrying too heavy setup. I will also be posting the photos online, so the typical viewing size and situation for them pretty much obfuscates maybe 80 % of the optical issues. So: compact cameras, compact lenses – great photos? I am not sure. But: good enough.

More frozen grass, Canon EOS M50, and the kit lens: EF-M 15-45mm f/3.5-6.3 IS STM.

“Soft” and “sharp” photos

Christmas decorations, photo taken with f/1.2, 50mm lens.

As holidays are traditionally time to be lazy and just rest, I have not undertaken any major photography projects either. One thing that I have been wondering though, has been the distinction between “soft” and “sharp” photos. There are actually many things intermingling here. In old times, the lenses I used were not capable of delivering optically sharp images, and due to long exposure times, unsensitive film (later: sensors), the images were also often blurry: I had not got the subject in focus and/or there was blur caused by movement (of target and/or the camera shaking). Sometimes the blurry outcomes were visually or artistically interesting, but this was mostly due to pure luck, rather than any skill and planning.

Later, it became feasible to get images that were technically controlled and good-looking according to the standard measurements of image quality. Particularly the smartphone photos have changed the situation in major ways. It should be noted that the small sensor and small lenses in early mobile phone cameras did not even need to have any sort of focus mechanisms – they were called ‘hyperfocal lenses’, meaning that everything from very close distance to infinity would always be “in focus” (at least theoretically). As long as you’d have enough light and not too much movement in the image, you would get “sharp” photos.

Non-optimal “soft” photo: a mobile phone (iPhone) photo, taken with 10x “digital zoom”, which is actually just a cropped detail from the image optically created in the small sensor.

However, sharpness in this sense is not always what a photographer wants. Yes, you might want to have your main subject to be sharp (have a lot of details, and be in perfect focus), but if everything in the image background shows such detail and focus as well, that might be distracting, and aesthetically displeasing.

Thus, the expensive professional cameras and lenses (full frame bodies, and “fast”, wide-aperture lenses) are actually particularly good in producing “soft” rather than “sharp” images. Or, to put it slightly better, they will provide the photographer larger creative space: those systems can be used to produce both sharp and soft looking effects, and the photographer has better control on where both will appear in the image. The smartphone manufacturers have also added algorithmic techniques that are used to make the uniformly-sharp mobile photos softer, or blurry, in selected areas (typically e.g. in the background areas of portrait photos).

Sharpness in photos is both a question of information, and how it is visually expressed. For example, a camera with very low resolution sensor cannot be used to produce large, sharp images, as there is not enough information to start with. A small-size version of the same photo might look acceptably sharp, though. On the other hand, a camera with massively high-resolution sensor does not automatically procude sharp looking images. There are multiple other factors in play, and the visual acuity and contrast are perhaps the most crucial ones. The ray of light that comes through the lens and falls on the sensor produces what is called a “circle of confusion”, and a single spot of the subject should ideally be focused on so small spot in the sensor that it would look like a nice, sharp spot also in the finished image (note that this is also dependent on the visual acuity, the eyes of the person looking at it – meaning that discussions of “sharpness” are also in certain ways always subjective). Good quality optics have little diffraction effects that would optically produce visual blur to the photo.

Daytime photo of naakka (jackdaw) in winter, taken with a 600mm telephoto lens (SIGMA), f/7.1, exposure 1/400 seconds, ISO value at 6400 – with some EOS 550D body/sensor’s visual noise removed in postproduction at Lightroom. Note how the sharp subject is isolated with the blurry bacground even with the f/7+ aperture value, courtesy of long focal-range optics.

Similarly, the sharp and soft images may be affected by “visual noise”, which generally is created in the image sensor. In film days, the “grain” of photography was due to the actual small grains of the photosensitive particles that were used to capture the light and dark areas in the image. There were “low ISO” (less light-sensitive) film materials that had very fine-grained particles, and “high ISO” (highly light-sensitive) films that had larger and coarser particles. Thus, it was possible to take photos in low-light conditions (or e.g. with fast shutter speeds) with the sensitive film, but the downside was that there was more grain (i.e. less sharp details, and more visual noise) in the final developed and enlarged photographs. The same physical principles apply also today, in the case of photosensitive, semiconductive camera sensors: when the amplification of light signal is boosted, the ISO values go up, faster shots or images in darker conditions can be captured, but there will be more visual noise in the finished photos. Thus, the perfectly sharp, noise-free image cannot always be achieved.

But like many photographers seek for the soft “bokeh” effect into the backgrounds (or foregrounds) of their carefully composed photos, some photographers do not shy away from the grainy effects of visual noise, or high ISO values. Similar to the control of sharpness and softness in focus, the use of grain is also a question of control and planning: if all and everything one can produce has noise and grain, there is no real creative choice. Understanding the limitations of photographic equipment (with a lot of training and experimentation) will eventually allow one to utilize also visual “imperfections” to achieve desired atmospheres and artistic effects.

Chocolates were shot with f/1.4 value (50mm lens) – the ‘dreamy’ look was desired here, but note how even the second piece of chocolate is already blurred, as the “zone of acceptable sharpness” (also known as the “depth of field”) is very narrow here.

Testing Sigma 150-600mm/5.0-6.3 DG OS HSM Contemporary

I have long been thinking about a longer, telephoto range zoom lens, as this is perhaps the main technical bottleneck in my topic selection currently. After finding a nice offer, I made the jump and invested into Sigma 150-600mm/5.0-6.3 DG OS HSM Contemporary lens for Canon. It is not a true “professional” level wildlife lens (those are in 10 000+ euros/dollars price range in this focal length). But his has got some nice reviews on its image quality and portability. Though, by my standards this is a pretty heavy piece of glass (1,930 g).

The 150-600 mm focal range is in itself highly useful, but when you add this into a “crop sensor” body as I do (Canon has 1.6x crop multiplier), the effective focal range becomes 240-960mm, which is even more into the long end of telephoto lenses. The question is, whether there is still enough light left in the cropped setting at the sensor to allow autofocus to work reliably, and to let me shoot with apertures that allow using pretty noise-free ISO sensitivity settings.

I have only made one photo walk with my new setup yet, but my feelings are clearly at the positive side at this point. I could get decent images with my old 550D DSLR body with this lens, even in a dark, cloudy winter’s day. The situation improved yet lightly when I attached the Sigma into a Viltrox EF-M Speed Booster adapter and EOS M50 body. In this setup I lost the crop multiplier (speedboosters effectively operate as inverted teleconverters), but gained 1.4x multiplier in larger aperture. In a dark day more light was more important than getting that extra crop multiplier. There is nevertheless clear vignetting when Sigma 150-600 mm is used with Viltrox speedbooster. As I was typically cropping this kind of telephoto images in Lightroom in any case, that was not an issue for me.

The ergonomics of using the tiny M50 with a heavy lens are not that good, of course, but I am using a lens this heavy with a monopod or tripod (attached into the tripod collar/handle), in any case. The small body can just comfortably “hang about”, while one concentrates on handling the big lens and monopod/tripod.

In daylight, the autofocus operation was good, both with 550D and M50 bodies. Neither is a really solid wildlife camera, though, so the slow speed of setting the scene and focusing on a moving subject is somewhat of a challenge. I probably need to study the camera behaviour and optimal settings still a bit more, and also actually start learning the art of “wildlife photography”, if I intend to use this lens into its full potential.

My SIGMA 150-600 mm / Canon EOS M50 setup.

Stretching the little Canon to the max

There has been these endless discussions among photography enthusiasts on the strengths and weaknesses of various camera manufacturers for decades. It has been interesting to note that as the history-awareness has increased, some of this discussion has moved into a sort of meta-level: rather than talking about the suitablity of certain camera equipment for (certain kinds of) photography, the discussion has partly moved to discuss the strengths and weaknesses of entire philosophy or product-line strategy of various manufacturers.

Canon is an example that I am interested here, particularly as this is the manufacturer whose products I have been mostly using for the past two decades or more. The dominant criticism of Canon today seems to be that they (as late adopters of mirrorless systems camera technologies) are now spreading their efforts into too many directions, and thereby making it hard to provide anything really strong and credible for anyone. The history of Canon is great, of course, and I think that they still have the best user interface for their digital cameras, for example, and the back catalogue of Canon lenses is impressive. The problem today nevertheless is that it is difficult to see if Canon is still committed to continuing the DSLR camera and lens development in professional and enthusiast levels long into the future (as their recent releases of EOS 90D and 1D X Mark III DSLR bodies seems to suggest), or if anyone with an eye towards the future should invest into the RF mount lenses and EOS R series full-frame mirrorless cameras instead. (RF system is the most recent Canon camera family, it was announced in September 2018; Canon’s full-frame DSLR cameras have used the EF mount lenses since from 1987.) And what is the destiny of APS-C (“crop frame”) cameras, and the EF-M mount system (introduced in 2012) in all of this?

I have long used crop frame system cameras and either EF or EF-S (yet another Canon lens family) lenses, due to the nice balance that this combination provides in terms of versatility, compact sizes, image quality and price – which is always an important concern for a hobbyist photographer. Few months ago I made the move into the “mirrorless era”, deciding to invest into the most affordable of these alternative systems, the Canon EF-M mount family (my choice of camera body was the tiny, yet powerful EOS M50).

The initial experiences (as I have reported in this blog already earlier) have been mostly positive – it is easy to take a good photo with this system and some decent, native EF-M lens. And it is nice that I can use an adapter to attach my older, EF mount lenses into the new, EF-M mount body, even while the autofocus might not be as fast that way. But the fact is that most of the new Canon lenses now appear to be coming out to the other, mirrorless Canon system: the full-frame RF mount cameras. And it is particularly the “serious enthusiast” or advanced hobbyist category that seems to be left in the middle. Some, more sports and wildlife oriented Canon lenses and cameras that would suit them are being published in the DSLR (EF mount) ecosystem. Some of the most advanced lenses are coming out in RF system, but the prices of many of those are more in the professional, multiple-thousands of euros/dollars category per lens. But the R system bodies seem to be missing many of the features that true professionals would need from their camera systems, so that is not really working so well, either. And those amateur photographers (like myself) who have opted for Canon EF-M mirrorless mount system are mostly provided with compact lenses that do not have the image quality or aperture values that more advanced photography would profit from. And investing into a heavy EF lens, and then adding adapter to get it to work with the EF-M body does not make particularly good sense. That lens is not designed for a mirrorless system to start with, and the combination of ultra-compact camera body and heavy, full-frame DSLR lens is not a balanced one.

So, the advanced hobbyist / enthusiast crowd is sort of asking: Quo Vadis, Canon?

Some people have already voted with their feet, sold their Canon cameras and lenses and bought into a Sony or Fujifilm ecosystems instead. Those competing manufacturers have the benefit of simpler and more clear mirrorless (and APS-C) camera and lens strategies. They do not have so many millions of existing users with legacy camera and lens equipment to support, of course.

I am currently just trying to make the best out of my existing cameras and lenses. My lakeside camera walk today involved mostly using the Canon L-series 70-200 mm f/4 EF lens with the old APS-C, DSLR body (550D), which has better grip for handling a larger lens. And the landscape photos and detailed close-ups I shot with the new M50 and the sharp 22mm f/2 EF-M lens.

Maybe the third-party manufacturers will provide some help in strengthening the EF-M ecosystem in the future. For example, SIGMA has announced that it will soon port three of its good quality prime lenses into EF-M system: Sigma 16mm, 30mm, and 56mm F1.4 DC DN Contemporary. Hopefully there will be more of such quality glass coming up – also from Canon itself. Producing good quality lenses that are also physically small enough to make sense when attached into an EF-M camera, and which have also affordable enough price, is not trivial achievement, it looks like.

SIGMA lenses.
New SIGMA lenses for the Canon EF-M mount cameras.

Perfect blues

Hervantajärvi, a moment after the sunset.

While learning to take better photos with within the opportunities and limitations provided by whatever camera technology offers, it is also interesting now and then to stop to reflect on how things are evolving.

This weekend, I took some time to study rainy tones of Autumn, and also to hunt for the “perfect blues” of the Blue Hour – the time both some time before sunrise and after the sunset, when indirect sunlight coming from the sky is dominated by short, blue wavelenghts.

After a few attempts I think I got into the right spot at the right time (see the above photo, taken tonight at the beach of Hervantajärvi lake). At the time of this photo it was already so dark that I actually had trouble finding my gear and changing lenses.

I made the simple experiment of taking an evening, low-light photo with the same lens (Canon EF 50 mm f/1.8 STM) with two of my camera bodies – both the old, Canon EOS 550D (DSLR) and new EOS M50 (mirrorless). I tried to use the exact same settings for both photos, taking them only moments apart from the same spot, using a tripod. Below are two cropped details that I tried to frame into same area of the photos.

Evening photo, using EOS 550D.
Same spot, same lens, same settings – using EOS M50.

I am not an expert in signal processing or camera electronics, but it is interesting to see how much more detail there is in the lower, M50 version. I thought that the main differences might be in how much noise there is in the low-light photo, but the differences appear to go deeper.

The cameras are generations apart from each other: the processor of 550D is DIGIC 4, while M50 has the new DIGIC 8. That sure has a effect, but I think that the sensor might play even larger role in this experiment. There are some information available from the sensors of both cameras – see the links below:

While the physical sizes of the sensors are exactly the same (22.3 x 14.9 mm), the pixel counts are different (18 megapixels vs. 24.1 megapixels). Also, the pixel density differs: 5.43 MP/cm² vs. 7.27 MP/cm², which just verifies that these two cameras, launched almost a decade apart, have very different imaging technology under the hood.

I like using both of them, but it is important to understand their strengths and limitations. I like using the old DSLR in daylight and particularly when trying to photograph birds or other fast moving targets. The large grip and good-sized physical controls make a DSLR like EOS 550D very easy and comfortable to handle.

On the other hand, when really sharp images are needed, I now rely on the mirrorless M50. Since it is a mirrorless camera, it is easy to see the final outcome of applied settings directly from the electronic viewfinder. M50 also has an articulated, rotating LCD screen, which is really excellent feature when I need to reach very low, or very high, to get a nice shot. On the other hand, the buttons and the grip are just physically a bit too small to be comfortable. I never seem to hit the right switch when trying to react in a hurry, missing some nice opportunities. But when it is a still-life composition, I have good time to consult the tiny controls of M50.

To conclude: things are changing, good (and bad) photos can be taken, with all kinds of technology. And there is no one perfect camera, just different cameras that are best suited for slightly different uses and purposes.

M50: first experiences

Ouf-of-camera JPG (M50, with EOS-M 22mm f/2 lens).

I have been using the new Canon EOS M50 mirrorless system camera now for a month or so. The main experiences are pretty positive, but I have also some comments on what this camera is good and not so optimal for.

In terms of image quality and feature set, this is a pretty complete package. Canon can make good cameras. However, the small physical size of this camera is perhaps its most defining main characteristic. This means that M50 is excellent as a light and small travel companion, but also that it has too small grip to carry comfortably this body when there are some heavy “pro” lenses or telephoto lenses attached. One must carry the system from the lens instead.

I really like the touch screen interface of M50. The swiveling LCD is really functional, and it is easy to take that quick photo from extra low or high angles. The LCD touch interface Canon uses is perhaps the best in the market today: it is responsive, well designed and logically organised. This is particularly important for M50, since it has only few physical buttons, and a single rotating control. Photographer using M50 needs to use the touch UI for many key functions. This is perhaps something that many manual-settings oriented professional and enthusiast photographers do not like; it you like to set the aperture, exposure time and ISO from the physical controls, then M50 is not for you (one should consider e.g. Fujifilm X-T3 or T30 instead). But if one is comfortable working with electronic controls, then M50 provides multiple opportunities.

My old EOS camera had only few (nine) autofocus points (phase-detect), and only the single point in the middle was with the fast, cross-type AF. This M50 has 99 selectable AF points (143 with some lenses), covering 80 % of the sensor area (dual-pixel type). Coupled with the touch screen, this change has had an effect on my photography style. It is now possible to first compose the photo, look through the electronic viewfinder, and simultaneously use a thumb to drag the AF point/area (in a “computer mouse/touchpad style”) to the desired point in the screen. I am not completely fluent in this technique yet though, and my usual technique of center focusing first, then half-pressing to lock the focus, and then quickly making the final composition, and shooting, is perhaps in most situations quicker and simpler than moving the focus point around the screen. But since M50 remembers in Program mode (which I use most) where the AF point was left the last time, the center focusing method does not work properly any more. I just need to learn new tricks, and keep moving the AF points in the screen (or, let the camera do everything, in Full Auto mode, or go into Manual mode, and do focusing with the lens ring instead.

As a modern mirrorless camera, M50 is packed with sensors and comes with a powerful DIGIG8 processor, bright LCD screen and electronic viewfinder. All of this consumes electricity, and the battery life of M50 is nowhere near my old 550D (which, btw, also had an extra battery grip). A full day of shooting takes either two or three fully loaded LP-E12 batteries. Thus, this camera behaves like a smartphone with poor battery life. You need to be using that battery charger all the time. (The standard rating is 235 shots-per-charge, CIPA.)

When travelling, I have been using a lot the wireless capabilities of M50. It is really handy that one can move full resolution, or reduced resolution versions of photos into an iPhone, iPad or Android device while on the go. On the other hand, this is nowhere as easy as when shooting and sharing directly from a smartphone. Moving typical 200-300 photos from a shooting session into an iPad for editing and uploading is slow, and feels like it takes ages. (I have not yet cracked how to get the advertised real-time Bluetooth photo transfer to work.) The traditional workflow where the entire memory card is first read into a PC and processed with Lightroom makes still better sense, but it is nice to have the alternative, for mobile processing and sharing some individual photos at least.

Many reviewers of M50 have written a lot about the limitations of 4K video mode (high crop factor, no dual-pixel autofocus). I use video rarely, and then only full HD, so that is not an issue for me. There is an external microphone input, which might be handy, and the LCD screen can be turned to point forward, if I ever go into video blogging (not that I plan to do it).

The main plusses for me in M50 are the compact size, the excellent touch UI, and very nice image quality in still images. That I can use both the new, compact EF-M mount lenses, and (with adapters) also the traditional Canon EF lenses was a major factor when making the purchase decision, since the lens collection of a photographer is typically much more expensive part of the equipment, than the body only. Changing to Nikon, Fuji or Sony would have been a big investement.

The autofocus system in M50 is fast, and in burst mode the camera can shoot 10 fps for 30 jpg shots in a row to fill the buffer. I am not a sports or wildlife photographer as such, so this is good enough for me. A physically bigger body would make the camera easier to handle with large and heavy lenses, but shooting with a large lens is a two-hand operation in any case (and in some cases requires using a tripod), so that is not so critical. I still need to train more to use the controls and switch between camera modes faster, and touch interface is probably never going to be as fast as using a camera with several dedicated physical controls. But this is a compromise one can make, to get this feature set, image quality and lens compatibility in this small package, in this price.

You can find the full M50 tech specs and feature set here in English: https://www.canon.co.uk/cameras/eos-m50/specifications/ and in Finnish: https://www.canon.fi/cameras/eos-m50/specifications/.

EOS M mount: interesting adapters

Attaching EF lenses to M mount camera requires an adapter – which adds a bit to the bulk of a small camera, but is also an interesting opportunity, since it is possible to fit new electronic or optical functionalities inside that middle piece.

I have both the official, Canon-made “EF-EOS M” mount adapter, which keeps the optical characteristics of the lens similar to what they would be if used on an EF-S mount camera (crop and all). The other adapter is “Viltrox EF-EOS M2 Lens Adapter 0.71x Speed Booster” (a real mouthful), which has the interesting capability of multiplying the focal length by factor of 0.71. This is a sort of “inverted teleconverter” as it reduces the image size that the lens produces, allowing more light to fit into the smaller (APS C) sensor, and almost eliminates the crop factor.

Most interestingly, as the booster collects more light into the sensor, this also has an effect of increasing the maximum aperture of my EF/EF-S lenses in an M mount camera. When I attach Viltrox into my 70-200 mm F4, it appears to my M50 camera as an F2.8 lens (with that constant aperture over the entire zoom range). The image quality that these “active speed booster adapters” produce is apparently a somewhat contested topic among camera enthusiasts. In my personal, initial tests, I have been pretty happy: the sharpness and corner vignetting also appear to be well controlled and the images produced of rather good quality – or good enough for me, at least.

When I put this into my 50 mm F2.8 portrait lens, this lens functions as having F1.2 maximum aperture. This is pretty cool, e.g. the capability to shoot in lower-light conditions is much better this way, and the narrow depth of field is similar to much more heavy and expensive, full frame camera system when using this adapter.

In my tests so far, all my Canon EF lenses have worked perfectly with Viltrox. However, when testing with the Tamron 16-300 mm F/3.5-6.3 Di II VC PZD super-zoom lens, there are issues. The adapter focuses light in a wrong manner when using this lens, and the result is that the corners are cut away from images (see the picture below). So, your mileage may vary. I have written to Viltrox customer service and asked what they suggest in the Tamron case (I have updated the adapter into the most recent available firmware – this can be done very simply using a PC and the built-in micro-usb connector in the adapter).

You can read a bit more about this technology (in connection to the first, Metabones product) from here: https://www.newsshooter.com/2013/01/14/metabones-speed-booster-adapter-gives-lenses-an-extra-fstop-and-nearly-full-frame-focal-lengths-on-aps-c-sensors/