Transition to Mac

Apple’s M1 Processor Lineup, March 2022. (Source: Apple.)

I have been an occasional Mac user in the past: in 2007, I bought a Mac Mini (an Intel Core 2 Duo, 2.0 GHz model) from Tokyo where I was for the DiGRA conference. And in November 2013, I invested into a MacBook Pro with Retina Display (late 2013 model, with 2.4GHz Core i5, Intel Iris graphics). Both were wonderful systems for their times, but also sort of “walled garden” style environments, with no real possiblity for user upgrades and soon outpaced by PC systems, particularly in gaming. So, I found myself using the more powerful PC desktop computers and laptops, again and again.

Now, I have again started the process of moving back into the Apple/Mac ecosystem, this time full-time, with both the work and home devices, both in computing as well as in mobile tech being most likely in Apple camp, at some point later this year. Why, you might ask – what has changed?

The limitations of Apple in upgradability and general freedom of choice are still the same. Apple devices also continue to be typically more expensive than the comparably specced competitors from the non-Apple camp. It is a bit amusing to look at a bunch of smart professionals sitting next to each other, each tapping at the identical, Apple-logo laptops, glancing at their identical iPhones. Apple has managed to get a powerful hold on the independent professional scene (including e.g. professors, researchers, designers and developers), even while the large IT departments continue to prefer PCs, mostly due to the cheaper unit-prices and better support for centralised “desktop management”. This is visible in the universities, too, where the IT department gets PCs for support personnel and offers them as the default choice for new employees, yet many people pick up a Mac if they can decide themselves.

In my case, the decision to go back to Apple ecosystem is connected to two primary factors: the effects of corona pandemic, and the technical progress of “Apple silicon”.

The first factor consists of all the cumulative effects that are results from three years of remote and hybrid work. The requirements for fast and reliable systems that can support multitasking, video and audio really well are of paramount importance now. The hybrid meeting and teaching situations are particularly complex, as there is now need to run several communications tools simultaneously, stream high-quality video and audio, possibly also record and edit audio and video, while also making online publications (e.g., course environments, public lecture web pages, entire research project websites) that integrate video and photographic content more than used to be the case before.

In my case, it is particularly the lack of reliability and the incapability of PC systems in processing of image and video data that has led to the decision of going back to Apple. I have a relatively powerful thin-and-light laptop for work, and a Core i5/RTX 2060 Super based gaming/workstation PC at home. The laptop became underpowered first, and some meetings are now starting maybe 5-10 minutes late, with my laptop trying to find the strength needed to run few browser windows, some office software, a couple of communication and messaging apps, plus the required real-time video and audio streams. And my PC workstation can still run many older games, but when I import some photo and video files while also having a couple of editing tools open, everything becomes stuck. There is nothing as frustrating as staring on a computer screen where the “Wheel of Death” is spinning, when you have many urgent things to do. I have developed a habit of clicking on different background windows constantly, and keeping the Windows Task Manager all the time open, so that I can use it to immediately kill any stuck processes and try recovering my work to where I was.

Recently I got the chance to test an M1 MacBook Pro (thanks, Laura), and while the laptop was equal to my mighty PC workstation in some tasks, there were processes which were easily 5-10 times faster in the Mac, particularly everything related to file management, photo and video editing. And the overall feeling of responsiveness and fluency in multitasking was just awesome. The new “Apple silicon” chips and architectures are providing user experiences that are just so much better than anything that I have had in the PC side during the recent years.

There are multiple reasons behind this, and there are technical people who can explain the underlying factors much better than I can (see, e.g., what Erik Engheim from Oslo writes here: https://debugger.medium.com/why-is-apples-m1-chip-so-fast-3262b158cba2). The basic benefits are coming from very deep integration of Apple’s System-on-a-Chip (SOC), where in an M1 chip package, a whole computer has been designed and packed into one, integrated package:

  • Central processing unit (CPU) – the “brains” of the SoC. Runs most of the code of the operating system and your apps.
  • Graphics processing unit (GPU) — handles graphics-related tasks, such as visualizing an app’s user interface and 2D/3D gaming.
  • Image processing unit (ISP) — can be used to speed up common tasks done by image processing applications.
  • Digital signal processor (DSP) — handles more mathematically intensive functions than a CPU. Includes decompressing music files.
  • Neural processing unit (NPU) — used in high-end smartphones to accelerate machine learning (A.I.) tasks. These include voice recognition and camera processing.
  • Video encoder/decoder — handles the power-efficient conversion of video files and formats.
  • Secure Enclave — encryption, authentication, and security.
  • Unified memory — allows the CPU, GPU, and other cores to quickly exchange information
    (Source: E. Engheim, “Why Is Apple’s M1 Chip So Fast?”)

The underlying architecture of Apple Silicon comes from their mobile devices, iPhones and iPads, in particular. While mainstream PC components have grown over the years increasingly massive and power-hungry, the mobile environment has set its strict limits and requirements for the efficiency of system architecture. There are efforts to utilise the same ARM (advanced “reduced instruction set”) architectures that e.g. mobile chip maker Qualcomm uses in their processors for Android mobile phones, also in the “Windows on Arm” computers. While the Android phones are doing fine, the Arm-based Windows computers have been generally so slow and limited in their software support that they have remained in the margins.

In addition to the reliability, stability, speed and power-efficiency benefits, Apple can today also provide that kind of seamless integration between computers, tablet devices, smartphones and wearable technology (e.g., AirPod headphones and Apple Watch devices) that the users of more hybrid ecosystems can only dream about. This is now also becoming increasingly important, as (post-pandemic), we are moving between home office, the main office, various “third spaces” and e.g. conference travel, while also still keeping up the remote meetings and events regime that emerged during the corona isolation years. Life is just so much easier when e.g. notifications, calls and data follow you more or less seamlessly from device to device, depending on where you are — sitting, running or changing trains. As the controlling developer-manufacturer of both hardware, software and underlying online services, Apple is in the enviable position to implement a polished, hybrid environment that works well together – and, thus, is one less source of stress.

Recommended laptops, March 2018

Every now and then I am asked to recommend what PC to buy. The great variety in individual needs and preferences make this ungrateful task – it is dangerous to follow someone else’s advice, and not to do your own homework, and hands-on testing yourself. But, said that, here are some of my current favourites, based on my individual and highly idiosyncratic preferences:

My key criterion is to start from a laptop, rather than a desktop PC: laptops are powerful enough for almost anything, and they provide more versatility. When used in office, or home desk, one can plug in external keyboard, mouse/trackball and display, and use the local network resources such as printers and file servers. The Thunderbolt interface has made it easy to have all those things plugged in via a single connector, so I’d recommend checking that the laptop comes with Thunderbolt (it uses USB-C type connector, but not all USB-C ports are Thunderbolt ports).

When we talk about laptops, my key criteria would be to first look at the weight and get as light device as possible, considering two other key criteria: excellent keyboard and good touch display.

The reasons for those priorities are that I personally carry the laptop with me pretty much always, and weight is then a really important factor. If thing is heavy, the temptation is just to leave it where it sits, rather than pick it up while rushing into a quick meeting. And when in the meeting one needs to make notes, or check some information, one is at the mercy of a smartphone picked from the pocket, and the ergonomics are much worse in that situation. Ergonomics relate to the point about excellent keyboard and display, alike. Keyboard is to me the main interface, since I write a lot. Bad or even average keyboard will make things painful in the long run, if you write hours and hours daily. Prioritising the keyboard is something that your hands, health and general life satisfaction will thank, in the long run.

Touch display is something that will probably divide the opinions of many technology experts, even. In the Apple Macintosh ecosystem of computers there is no touch screen computer available: that modality is reserved to iPad and iPhone mobile devices. I think that having a touch screen on a laptop is something that once learned, one cannot go away from. I find myself trying to scroll and swipe my non-touchscreen devices nowadays all the time. Windows 10 as an operating system has currently the best support for touch screen gestures, but there are devices in the Linux and Chromebook ecosystems that also support touch. Touch screen display makes handling applications, files easier, and zooming in and out of text and images a snap. Moving hands away from keyboard and touchpad every now and then to the edges of the screen is probably also good for ergonomics. However, trying to keep one’s hands on the laptop screen for extended times is not a good idea, as it is straining. Touch screen is not absolutely needed, but it is an excellent extra. However, it is important that the screen is bright, sharp, and has wide viewing angles; it is really frustrating to work on dim washed-out displays, particularly in brightly lit conditions. You have to squint, and end up with a terrible headache at the end of the day. In LCD screens look for IPS (in-plane switching) technology, or for OLED screens. The latter, however, are still rather rare and expensive in laptops. But OLED has the best contrast, and it is the technology that smartphone manufacturers like Samsung and Apple use in their flagship mobile devices.

All other technical specifications in a laptop PC are, for me, secondary for those three. It is good to have a lot of memory, a large and fast SSD disk, and a powerful processor (CPU), for example, but according to my experience, if you have a modern laptop that is light-weight, and has excellent keyboard and display, it will also come with other specs that are more than enough for all everyday computing tasks. Things are a bit different if we are talking about a PC that will have gaming as its primary use, for example. Then it would be important to have a discrete graphics card (GPU) rather than only the built-in, integrated graphics in the laptop. That feature, with related added requirements to other technology means that such laptops are usually more pricey, and a desktop PC is in most cases better choice for heavy duty gaming than a laptop. But dedicated gaming laptops (with discrete graphics currently in the Nvidia Pascal architecture level – including GTX 1050, 1060 and even 1080 types) are evolving, and becoming all the time more popular choices. Even while many of such laptops are thick and heavy, for many gamers it is nice to be able to carry the “hulking monster” into a LAN party, eSports event, or such. But gaming laptops are not your daily, thin and light work devices for basic tasks. They are too overpowered for such uses (and consume their battery too fast), and – on the other hand – if a manufacturer tries fitting in a powerful discrete graphics card into a slim, lightweight frame, there will be generally overheating problems, if one really starts to put the system under heavy gaming loads. The overheated system will then start “throttling”, which means that it will automatically decrease the speed it is operating with, in order to cool down. These limitations will perhaps be eased with the next, “Volta” generation of GPU microarchitecture, making thin, light and very powerful laptop computers more viable. They will probably come with a high price, though.

Said all that, I can then highlight few systems that I think are worthy of consideration at this timepoint – late March, 2018.

To start from the basics, I think that most general users would profit from having a close look at Chromebook type of laptop computers. They are a bit different from Windows/Mac type personal computers that many people are mostly familiar with, and have their own limitations, but also clear benefits. The ChromeOS (operating system by Google) is a stripped down version of Linux, and provides fast and reliable user experience, as the web-based, “thin-client” system does not slow down in same way as a more complex operating system that needs to cope with all kinds of applications that are installed locally into it over the years. Chromebooks are fast and simple, and also secure in the sense that the operating system features auto-updating, running code in secure “sandbox”, and verified boot, where the initial boot code checks for any system compromises. The default file location in Chomebooks is a cloud service, which might turn away some, but for a regular user it is mostly a good idea to have cloud storage: a disk crash or lost computer does not lead into losing one’s files, as the cloud operates as an automatic backup.

ASUS Chromebook Flip (C302CA)
ASUS Chromebook Flip (C302CA; photo © ASUS).

ASUS Chromebook Flip (C302CA model) [see link] has been getting good reviews. I have not used this one personally, and it is on the expensive side of Chromebooks, but it has nice design, it is rather light (1,18 kg / 2,6 pounds), and keyboard and display are reportedly decent or even good. It has a touch screen, and can run Android apps, which is becoming one of the key future directions where the ChromeOS is heading. As an alternative, consider Samsung Chromebook Pro [see link], which apparently has worse keyboard, but features an active stylus, which makes it strong when used as a tablet device.

For premium business use, I’d recommend having a look at the classic Thinkpad line of laptop computers. Thin and light Thinkpad X1 Carbon (2018) [see link] comes now also with a touch screen option (only in FHD/1080p resolution, though), and has a very good keyboard. It has been recently updated into 8th generation Intel processors, which as quad-core systems provide a performance boost. For a more touch screen oriented users, I recommend considering Thinkpad X1 Yoga [see link] model. Both of these Lenovo offerings are quite expensive, but come with important business use features, like (optional) 4G/LTE-A data card connectivity. Wi-Fi is often unreliable, and going through the tethering process via a smartphone mobile hotspot is not optimal, if you are running fast from meeting to meeting, or working while on the road. The Yoga model also used to have a striking OLED display, but that is being discontinued in the X1 Yoga 3rd generation (2018) models; that is replaced by a 14-inch “Dolby Vision HDR touchscreen” (max brightness of 500 nits, 2,560 x 1,440 resolution). HDR is still an emerging technology in laptop displays (and elsewhere as well), but it promises a wider colour gamut – a set of available colours. Though, I am personally happy with the OLED in the 2017 model X1 Yoga I am mostly using for daily work these days. X1 Carbon is lighter (1,13 kg), but X1 Yoga is not too heavy either (1,27 kg). Note though, that the keyboard in Yoga is not as good as in the Carbon.

Thinkpad X1 Yoga
Thinkpad X1 Yoga (image © Lenovo).

There are several interesting alternatives, all with their distinctive strengths (and weaknesses). I mention here just shortly these:

  • Dell XPS 13 (2018) [see link] line of ultraportable laptops with their excellent “InfinityEdge” displays has also been updated to 8th gen quad core processors, and is marketed as the “world’s smallest 13-inch laptop”, due to the very thin bezels. With the weight of 1,21 kg (2,67 pounds), XPS 13 is very compact, and some might even miss having a bit wider bezels, for easier screen handling. XPS does not offer 4G/LTE module option, to my knowledge.
  • ASUS Zenbook Pro (UX550) [see link] is a 15-inch laptop, which is a bit heavier (with 1,8 kg), but it scales up to 4k displays, and can come with discrete GTX 1050 Ti graphics option. For being a bit thicker and heavier, Zenbook Pro is reported to have a long battery life, and rather capable graphics performance, with relatively minor throttling issues. It has still 7th gen processors (as quad core versions, though).
  • Nice, pretty lightweight 15-inch laptops come from Dell (XPS 15) [see link] and LG, for example – particularly with LG gram 15 [see link], which is apparently a very impressive device, and weighs only 1,1 kg while being a 15-inch laptop; it is shame we cannot get it here in Finland, though.
  • Huawei Matebook X Pro
    Huawei Matebook X Pro (photo © Huawei).
  • As Apple has (for my eyes) ruined their excellent Macbook Pro line, with too shallow keyboard, and by not proving any touch screen options, people are free to hunt for Macbook-like experiences elsewhere. Chinese manufacturers are always fast to copy things, and Huawei Matebook X Pro [see link] is an interesting example: it has a touch screen (3K LTPS display, 3000 x 2000 resolution with 260 PPI, 100 % colour space, 450 nits brightness), 8th gen processors, GTX MX 150 discrete graphics, 57,4 Wh battery, Dolby Atmos sound system, etc, etc. This package weighs 1,33 kg. It is particularly nice to see them not copying Apple in their highly limited ports and connectivity – Matebook X Pro has both Thunderbolt/USB-C, but also the older USB-A, and a regular 3,5 mm headphone port. I am dubious about the quality of the keyboard, though, until I have tested it personally. And, one can always be a bit paranoid about the underlying security of Chinese-made information technology; but then again, the Western companies have not proved necessarily any better in that area. It is good to have more competition in the high end of laptops, as well.
  • Finally, one must mention also Microsoft, which sells its own Surface line of products, which have very good integration with the touch features of Windows 10, of course, and also generally come with displays, keyboards and touchpads that are among the very best. Surface Book 2 [see link] is their most versatile and powerful device: there are both 15-inch and 13,5-inch models, both having quad-core processors, discrete graphics (up to GTX 1060), and good battery life (advertised up to 17 hours, but one can trust that the real-life use times will be much less). Book 2 is a two-in-one device with a detachable screen that can work independently as a tablet. However, this setup is heavier (1,6 kg for 13,5-inch, 1,9 kg for the 15-inch model) than the Surface Laptop [see link], which does not work as a tablet, but has a great touch-screen, and weighs less (c. 1,5 kg). The “surface” of this Surface laptop is pleasurable alcantara, a cloth material.

MS Surface Laptop with Alcantara
MS Surface Laptop with alcantara (image © Microsoft).

To sum up, there are many really good options these days in personal computers, and laptops in general have evolved in many important areas. Still it is important to have hands-on experience before committing – particularly if one is using the new workhorse intensely, this is a crucial tool decision, after all. And personal preference (and, of course, available budget) really matters.

Price for mobile use value: laptops

Chromebook 2 on scale.
Toshiba Chromebook 2 on scale.

I did a quick comparison of three kinds of laptops: a touchscreen Win8-PC, Macbook Pro, and a Chromebook. Since I am primarily interested in how much use time I get, for which price, and how much weight I need to carry around, here is a simple metric for the price of such “mobile use value” of a laptop. ASUS Vivobook X202E (500 €) = 1,5 kg, MacBook Pro Retina 13 (1300 €) = 2.2 kg, Toshiba Chromebook 2 Full HD/IPS (400 €) = 1,5 kg (all weights with the powerbrick included, my Mac is also protected by a Tech21 case). Vivobook’s battery runs out in c. 3-4 hours, Toshiba should go for 8 hours, and the Mac can do perhaps 9-11 hours (this is the late 2013 model). The “metric” for price/hours*weight comparison would thus be:

  • ASUS Vivobook: 500/4*1,5 = 188
  • Macbook Pro: 1300/10*2,2 = 286
  • Toshiba Chromebook 2: 400/8*1,5 = 75

Your needs may vary, but with these criteria of mine, Toshiba Chromebook 2 is pretty much in its own class regarding this kind of mobile use value (light-weight, capable laptop with adequate battery life and moderate price). Chrome OS is mostly limited by its reliance on various online services, and particularly on daily work, moving data and files from one service to another may require some extra steps, but in my tests, almost everything that needs to be done, can be done also with a Chromebook. And the totally silent, solid laptop with good keyboard, responsive touchpad and amazing, Full-HD IPS screen provides excellent user experience. MacBook Pro is much more premium device, but with its price-tag I feel less confident throwing it into my back while running into bus/airport etc. (hence, the Tech21 case). A Chromebook can even be lost on the road – and all data is still safe in the cloud, not in the laptop. (The “Smart Lock” of Chromebook detects when myself/my Android phone is not nearby, and will automatically lock itself.) A budget Windows laptop like my old ASUS Vivobook simply cannot compete here, it is much slower than either of the two others, its touchpad is pretty terrible and touchscreen use of Win8.1 has its continuous challenges. Add there mediocre battery life, and you do not have best value for mobile use.

Toshiba Chromebook 2.
Toshiba Chromebook 2 (viewing angles, from the sides).

One could of course add tablet devices like iPad Air 2 or the forthcoming Surface Pro 4 into the equation here, and argue that they’d make more sense than a Chromebook – even according to the above metric. That might be true for some, but in my use I rely on the classic “clamshell” design of a laptop, and an add-on keyboard is never the same. MacBook Air, or the new 12″ MacBook are very good devices for mobile use, but the price is not in the Chromebook range. But: everyone makes their own decisions, in the end. My guess is that particularly in the education sector Chromebooks will do increasingly well in this new era of “Cloud Computing”.