Hydroponics?

I have done my chili gardening so far only with traditional, soil-based methods. The results have been varied, and there seems to be the constant threat of pests, plant diseases, or improper amounts of water and nutrients while working with soil. I am not completely sure how real this observation is, but I think I have noticed that e.g. soil-based chili growing is something that some of the more passionate hobbyists have long left behind. After moving into hydrophonics (where nutrients and oxygen are moved with water flow to plant roots), then to aeroponics (use of moist air to nourish hanging root systems), some even have made use of the NASA experiments in the International Space Station to create “high pressure aeroponics” or ultrasonic “fogponics” systems, where very small, 50 micron droplet size is utilised, to stimulate the growth of fine root hairs (trichoblasts) that maximise the surface area of root system, and produce optimal crop yield with minimal amounts of water and nutrients. The related high-pressure pumps and misting nozzle systems are interesting in engineering sense, I admit.

The first seedlings, spring 2019.

I was personally merely considering the more prosaic “bucket bubbler” hydroponics setup, but even that proved a bit problematic in my case. (There is no electric line running into our greenhouse, where I was planning these hydroponic bubblers to be situated.) Thus, I have now turned towards “passive hydroponics”, which is probably the oldest way this has been applied: growing plants without soil. The version that I am now aiming at is internationally known as a “hempy bucket” method: a black/dark bucket is filled with a 3 parts perlite and 1 part vermiculite mix, where the chili seedling is planted. There needs to be a drill hole for excess water down in the bucket, at c. 2 inches (or c. 5 cm) from the bottom. One then waters the plant with a nutrient, hydroponic solution every other day, until the roots grow and reach the water reservoir at the bottom part of the bucket. The solution watering is then reduced a bit, to twice a week. The water reservoir, bucket microclimate and perlite-vermiculite substrate keeps the upper roots supported, nourished and moist, while also providing nice amounts of oxygen, while the submerged, lower parts of the roots deliver the plant plenty of water and nutrients. The final outcome should be a better and more controlled growing environment than what can be reached in typical soil-based gardening.

For more, see e.g.

Selection of chilies, Spring 2019

Some of the chili crop, 2018.

I have been growing my own crops of chili peppers for few years now, and every year it feels like I am a bit late in starting the germination period. This time, it is already late January, and I am still just selecting the seeds and species to grow. These are the varieties I have narrowed down the selection this time – I have also attached links to Fatalii Seeds, who provide a bit more information about each:

Taken together, all these species and varieties capture quite nicely the enormous range of options that chili cultivation provides. In some, my main interest is in the taste and productivity of chilies, in some, the exotic and interesting looks would provide joy to the hobbyist chili farmer. In some, it the main interest would lie in understanding more about some of the more exotic, alternative options that the chili universe provides. But I think that all of these should be relatively easy to grow, so in that sense they all could be realistic options. Let’s see how this goes; it is clear that I cannot grow as many as I am interested in, and also the number of plants need to be kept to the mininum, considering the small greenhouse and our other spaces.

Microblogging

Diablo3.
My updates about e.g. Diablo3, or Pokémon GO, will go into https://frans.game.blog/.

I decided to experiment with microblogging, and set up three new sites: https://frans.photo.blog/https://frans.tech.blog/ and https://frans.game.blog/. All these “dot-blog” subdomains are now offered free by WordPress.com (see: https://en.blog.wordpress.com/2018/11/28/announcing-free-dotblog-subdomains/). The idea is to post my photos, game and tech updates into these sites, for fast updates and for better organisation, than in a “general” blog site, and also to avoid spamming those in social media, who are not interested in these topics. Feel free to subscribe – or, set up your own blog.

Personal Computers as Multistratal Technology

HP-Sure-Run-Error
HP “Sure Run” technology here getting into conflicts with the OS and/or computer BIOS itself.

As I was struggling through some operating system updates and other installs (and uninstalls) this week, I was again reminded about the history of personal computers, and about their (fascinating, yet often also frustrating) character as multistratal technology. By this I mean their historically, commercially and pragmatically multi-layered nature. A typical contemporary personal computer is a laptop more often than a desktop computer (this has been the situation for numerous years already, see e.g. https://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/). Whereas a personal computer in a desktop format is still something that one can realistically consider to construct by combining various standards-following parts and modules, and expect to start operating after installation of an operating system (plus typically some device drivers), the laptop computer is always configured and tweaked into particular interpretation of what a personal computing device should be – for this price group, for this usage category, with these special, differentiating features. The keyboard is typically customised to fit into the (metal and/or plastic) body so that the functions of a standard 101/102-key PC keyboard layout (originally by Mark Tiddens of Key Tronic, 1982, then adopted by IBM) are fitted into e.g. c. 80 physical keys of a laptop computer. As the portable computers have become smaller, there has been increased need to do various customised solutions, and a keyboard is a good example of this, as different manufacturers appear to resort each into their own style of fitting e.g. function keys, volume up/down, brightness controls and other special keys into same physical keys, using various keyboard press combinations. While this means that it is hard to be a complete touch-typist if one is changing from one brand of laptops to another one (as the special keys will be in different places), one should still remember that in the early days of computers, and even in the era of early home and personal computers, the keyboards were even much more different from each other, than they are in today’s personal computers. (See e.g. Wikipedia articles for: https://en.wikipedia.org/wiki/Computer_keyboard and https://en.wikipedia.org/wiki/Function_key).

The heritage of IBM personal computers (the “original PCs”) coupled with the Microsoft operating systems, (first DOS, then various Windows versions) has meant that there is much shared DNA in how the hardware and software of contemporary personal computers is designed. And even Apple Macintosh computers share much of similar roots with those of IBM PC heritage – most importantly due to the influential role that the graphical user interface and with its (keyboard and mouse accessed) windows, menus and other graphical elements originating in Douglas Engelbart’s On-Line System, then in Xerox PARC and Alto computers had for both Apple’s macOS and Microsoft Windows. All these historical elements, influences and (industry) standards are nevertheless layered in complex manner in today’s computing systems. It is not feasible to “start from an empty table”, as the software that organisations and individuals have invested in using needs to be accessible in the new systems, as also the skill sets of human users themselves are based on similarity and compatibility with the old ways of operating computers.

Today Apple with its Mac computers and Google with the Chromebook computers that it specifies (and sometimes also designs to the hardware level) are most optimally positioned to produce a harmonious and unified whole, out of these disjointed origins. And the reliability and generally positive user experiences provided both by Macs and Chromebooks indeed bears witness to the strength of unified hardware-software design and production. On the other hand, the most popular platform – that of a personal computer running a Microsoft Windows operating system – is the most challenging from the unity, coherence and reliability perspectives. (According to reports, the market share of Windows is above 75 %, macOS at c. 20 %, Google’s ChromeOS at c. 5 % and Linux at c. 2 % in most markets of desktop and laptop computers.)

A contemporary Windows laptop is set up in a complex network of collaborative, competitive and parallel operations networks of multiple operators. There is the actual manufacturer and packager of computers that markets and delivers certain, branded products to users: Acer, ASUS, Dell, HP, Lenovo, and numerous others. Then there is Microsoft who develops and licences the Windows operating system to these OEMs (Original Equipment Manufacturers), collaborating to various degrees with them, and with the developers of PC components and other device makers. For example, a “peripheral” manufacturer like Logitech develops computer mice, keyboards and other devices that should install and run in a seamless manner when connected to desktop or laptop computer that has been put together by some OEM, which, in turn, has been combining hardware and software elements coming from e.g. Intel (which develops and manufactures the CPUs, Central Processing Units, but also affiliated motherboard “chipsets”, integrated graphics processing units and such), Samsung (which develops and manufactures e.g. memory chips, solid state drives and display components) or Qualcomm (which is best known for their wireless components, such as cellular modems, Bluetooth products and Wi-Fi chipsets). In order for the new personal computer to run smoothly after it has been turned on for the first time, the operating system should have right updates and drivers for all such components. As new technologies are constantly introduced, and the laptop computer in particular follows the evolution of smartphones in sensor technologies (e.g. in using fingerprint readers or multiple camera systems to do biometric authentication of the user), there are constant needs for updates that involve both the operating system itself, and the firmware (deep, hardware-close level software) as well as operating system level drivers and utility programs, that are provided by the component, device, or computer manufacturers.

The sad truth is, that often these updates do not work out that fine. There are endless stories in the user discussion and support forums in the Internet, where unhappy customers describe their frustrations while attempting to update Windows (as Microsoft advices them), the drivers and utility programs (as the computer manufacturer instructs them), and/or the device drivers (that are directly provided by the component manufacturers, such as Intel or Qualcomm). There is just so much opportunity for conflicts and errors, even while the big companies of course try to test their software before it is released to customers. The Windows PC ecosystem is just so messy, heterogeneous and historically layered, that it is impossible to test beforehand every possible combination of hardware and software that the user might be having on their devices.

Adobe-Update-Issue
Adobe Acrobat Reader update error.

In practice there are just few common rules of thumb. E.g. it is a good idea to postpone installing the most recent version of the operating system as long as possible, since the new one will always have more compatibility issues until it has been tested in “real world”, and updated a few times. Secondly, while the most recent and advanced functionalities are something that are used in marketing and in differentiation of the laptop from the competing models, it is in these new features where most of the problems will probably appear. One could play safe, and wipe out all software and drivers that the OEM had installed into their computer, and reinstall a “pure” Windows OS into the new computer instead. But this can mean that some of the new components do not operate in advertised ways. Myself, I usually test the OEM recommended setup and software (and all recommended updates) for a while, but also do regular backups, restore points, and keep a reinstall media available, just in case something goes wrong. And unfortunately, quite often this happens, and returning to the original state, or even doing a full, clean reinstall is needed. In a more “typical” or average combination of hardware and software such issues are not so common, but if one works with new technologies and features, then such consequences of complexity, heterogeneity and multistratal character of personal computers can indeed be expected. Sometimes, only trial and error helps: the most recent software and drivers might be needed to solve issues, but sometimes it is precisely the new software that produces the problems, and the solution is going back to some older versions. Sometimes disabling some function helps, sometimes only way into proper reliability is just completely uninstalling an entire software suite by a certain manufacturer, even if it means giving up some promised, advanced functionalities. Life might just be simpler that way.

Professorial Fellow (tutkijaprofessori), starting in August

img_8012I was happy to note the news today that I had been selected as the Professorial Fellow (tutkijaprofessori) into the Institute for Advanced Social Research (IASR) in the research collegium of the University of Tampere. This will be for a fixed term of one year, and I will also remain in the role of director of Centre of Excellence in Game Culture Studies. But my job description will change for the coming academic year, so that I will leave most (the idea is: ALL) teaching and administration, and just focus on doing research for one year.

I have done long days in the service of multiple departments, schools and faculties, since 2006 in the administrative roles of Deputy Director, and then as the Vice Dean, so after those 12 years, it feels great to be able to clean the calendar a bit, expand the horizons, and just focus on actual research work for a full year.

My research plan for this year is titled “Empowerment and exclusion – Meaning and agency in contemporary game cultures”, and you can also go and read about all the other new collegium research fellows (in Finnish) from here: http://www.uta.fi/ajankohtaista/uutinen/uudet-kollegiumtutkijat-valittiin-0.

Summer Computing

20180519_190444.jpg
Working with my Toshiba Chromebook 2, in a sunny day.

I am not sure whether this is true for other countries, but after a long, dark and cold winter, Finns want to be outdoors, when it is finally warm and sunny. Sometimes one might even do remote work outdoors, from a park, cafe or bar terrace, and that is when things can get interesting – with that “nightless night” (the sun shining even at midnight), and all.

Surely, for most aims and purposes, summer is for relaxing and dragging your work and laptop always with you to your summer cottage or beach is not a good idea. This is definitely precious time, and you should spend it to with your family and friends, and rewind from the hurries of work. But, if you would prefer (or, even need to, for a reason or another) take some of your work outdoors, the standard work laptop computer is not usually optimal tool for that.

It is interesting to note, that your standard computer screens even today are optimised for a different style of use, as compared to the screens of today’s mobile devices. While the brightest smartphone screens today – e.g. the excellent OLED screen used in Samsung Galaxy S9 – exceed 1000 nits (units of luminance: candela per square meter; the S9 screen is reported to produce max 1130 nits), your typical laptop computer screens max out around measly 200 nits (see e.g. this Laptop Mag test table: https://www.laptopmag.com/benchmarks/display-brightness ). While this is perfectly good while working in a typical indoor, office environment, it is very hard to make out any details of such screens in bright sunlight. You will just squint, get a headache, and hurt your eyes, in the long run. Also, many typical laptop screens today are highly reflective, glossy glass screens, and the matte surfaces, which help against reflections, have been getting very rare.

It is as the “mobile work” that is one of the key puzzwords and trends today, means in practice only indoor-to-indoor style of mobility, rather than implying development of tools for truly mobile work, that would also make it possible to work from a park bench in a sunny day, or from that classical location: dock, next to your trusty rowing boat?

I have been hunting for business oriented laptops that would also have enough maximum screen brightness to scale up to comfortable levels in brighly lit environments, and there are not really that many. Even if you go for tablet computers, which should be optimised for mobile work, the brightness is not really at level with the best smartphone screens. Some of the best figures come from Samsung Galaxy Tab S3, which is 441 nits, iPad Pro 10.5 inch model is reportedly 600 nits, and Google Pixel C has 509 nits maximum. And a tablet devices – even the best of them – do not really work well for all work tasks.

HP ZBook Studio x360 G5
HP ZBook Studio x360 G5 (photo © HP)

HP has recently introduced some interesting devices, that go beyond the dim screens that most other manufacturers are happy with. For example, HP ZBook Studio x360 G5 supposedly comes with a 4k, high resolution anti-glare touch display that supports 100 percent Adobe RPG and which has 600 nits of brightness, which is “20 percent brighter than the Apple MacBook Pro 15-inch Retina display and 50 percent brighter than the Dell XPS UltraSharp 4K display”, according to HP. With its 8th generation Xeon processors (pro-equivalent to the hexacore Core i9), this is a powerful, and expensive device, but I am glad someone is showing the way.

EliteBook-X360-2018
HP advertising their new bright laptop display (image © HP)

Even better, the upcoming, updated HP EliteBook x360 G3 convertible should come with a touchscreen that has maximum brightness of 700 nits. HP is advertising this as the “world’s first outdoor viewable display” for a business laptop, which at least sounds very promising. Note though, that this 700 nits can be achieved with only the 1920 x 1080 resolution model; the 4K touch display option has 500 nits, which is not that bad, either. The EliteBooks I have tested also have excellent keyboards, good quality construction and some productivity oriented enhancements that make them an interesting option for any “truly mobile” worker. One of such enhancement is a 4G/LTE data connectivity option, which is a real bless, if one moves fast, opening and closing the laptop in different environments, so that there is no reliable Wi-Fi connection available all the time. (More on HP EliteBook models at: http://www8.hp.com/us/en/elite-family/elitebook-x360-1030-1020.html.)

HP-EliteBook-x360-1030-G3_Tablet
EliteBook x360 G3 in tablet mode (photo © HP)

Apart from the challenges related to reliable data connectivity, a cloud-based file system is something that should be default for any mobile worker. This is related to data security: in mobile work contexts, it is much easier to lose one’s laptop, or get it robbed. Having a fast and reliable (biometric) authentication, encrypted local file system, and instantaneous syncronisation/backup to the cloud, would minimise the risk of critical loss of work, or important data, even if the mobile workstation would drop into a lake, or get lost. In this regard, Google’s Chromebooks are superior, but they typically lack the LTE connectivity, and other similar business essentials, that e.g. the above EliteBook model features. Using a Windows 10 laptop with either full Dropbox synchronisation enabled, or with Microsoft OneDrive as the default save location will come rather close, even if the Google Drive/Docs ecosystem in Chromebooks is the only one that is truly “cloud-native”, in the sense that all applications, settings and everything else also lives in the cloud. Getting back to where you left your work in the Chrome OS means that one just picks up any Chromebook, logs in, and starts with a full access to one’s files, folders, browser addons, bookmarks, etc. Starting to use a new PC is a much less frictionless process (with multiple software installations, add-ons, service account logins, the setup can easily take full working days).

20180519_083722.jpgIf I’d have my ideal, mobile work oriented tool from today’s tech world, I’d pick the business-enhanced hardware of HP EliteBook, with it’s bright display and LTE connectivity, and couple those with a Chrome OS, with it’s reliability and seamless online synchronisation. But I doubt that such a combo can be achieved – or, not yet, at least. Meanwhile, we can try to enjoy the summer, and some summer work, in bit more sheltered, shady locations.