Chilies in the greenhouse

First flowers: chilies, 2019 season.

My first hydroponics chili pepper growing season has been bit of a mixed experience so far. On the one hand, the passive hydroponic setup that I installed (based on the AutoPot 4pot system, HydroCoco, and Canna Coco A+B) was a great success. The plats really grew fast.

So fast actually, that I was soon in trouble with them. My planting schedule was based on my earlier experiences with soil-based gardening, but the growth speed in hydroponics is much faster. I germinated the seeds in early February, moved selected seedlings into the AutoPot system in 25th February, and already in early April the plants were so tall they should had been moved to the greenhouse already. My LED plant light system was particularly a bottleneck – the fast-growing chili plants grew quickly up to the maximum height that I could adjust the LED strips into, and I needed to cut them down quite a bit. Even then, the plant growth would have needed better light, and real, strong sunlight that would had been coming from multiple angles, not just from those narrow LED strips.

But we got snow and “takatalvi” (cold spell & wintry weather) in April, and I could not move the plants into the greenhouse. I just kept growing them, cutting them down, growing more – and waiting for the weather to get warmer.

It was only in late May (18th May, to be exact), when the weather forecast told that further snow was now highly unlikely. I started moving the overgrown plants to the greenhouse, but lost maybe half of their branches. The weak, big plants were just not made for punishing physical handling. The hydroponics setup is not designed to be moved around, either.

Poor chilies, moved too late to the greenhouse.

But, I got the plants out, set up the AutoPot system again, this time into the greenhouse, filled it in with water and Canna Coco, and hoped for the best.

All four plants are still alive, which is nice. CAP 270 is in bloom, and is bearing the first fruit even now. But the plants are not that nice looking, as they lost much of their branches in the move, and the growth patterns are not that good, thinking about the future crop. The branches should be stronger, thicker and more symmetrical, to support decent amount of chili pods. Well, we’ll see what the final outcome will be.

The lesson? Maybe I need to carefully think about my cultivation schedules: the plants should be much smaller at the point when they still can safely be moved from indoors to the greenhouse. They should be pruned, so that the powerful growth can be controlled. But otherwise: hydroponic gardening seems like a really interesting option!

The first fruit (C. baccatum, “CAP 270”).

Hydroponics, pt. 3

My chili project was delayed for a week or two (a nasty virus hit), so I have only now gradually been able to set up and move forward with my hydroponics system. I did get the AutoPot 4pot system by mail order (everything else was ok, except the small “tophat grommet” that is used to seal the connection of watertube into the water reservoir tank – I got that from a local store). The growing medium is 60/40 “Gold Label” HydroCoco mix, with a small layer of pure hydrocorn at the bottom.

The LED light system was bit of a challenge to install so that I can adjust the right height of lamps from the tops of chili plants (without fastening anything to the ceiling, as our panels cannot take it). This time it was right spot for an “IkeaHack”: the “elevators” for LED strips were installed into a Ikea MULIG cloth rack. Underneath the entire system a 80 x 80 cm plastic vat was installed, just to be secure with all that water. The outcome is perhaps not very beautiful, but it seems functional enough. Let’s see how the Canna Coco A+B solution that I am feeding them will work out. I am following the mild, rooting phase solution recipe at this point: 20 ml of both fertilizers into a 10 L bucket of water.

My four pots finally host these: Lemon Drop, CAP 270, Sugar Rush Orange, and Hainan Yellow Lantern. (Laura has other four chili seedlings in soil pots.) Looking forward to good growth!

Hydroponics, pt. 2

Short update again on chilies and hydroponics (apologies): my current work on this is focused on three areas. Firstly, I have been trying to figure out what growing method (or sub-method) to use. As I wrote earlier, there are reasons why ‘passive hydroponics’ looks like the best in my case. There are different ways of implementing this, though. Understanding in advance e.g. the risks associated in algae growth, over- (or under-) fertilisation, and pests in passive hydroponics appears to be important. As contrasted with growing in soil, the basic situation with nutrients is very different. In principle the hydroponic growing should be free of many risks coming with soil (less risk of pests and plant diseases, no need for pesticides, etc.) However, a hydroponic farmer needs to be bit of a scientist, in that you need to understand something about physics, chemistry and some (very basic) bioengineering. The choice of growing medium (substrate) is important as in passive hydroponics one should get enough moisture (water) to the plant roots without suffocating them – thus, the material needs to be neutral (no bio-actives or fertilisers by its own), porous and spongy enough to hold suitable amounts of water when irrigated, but also get dry enough so that air can get to the roots in-between drenching.

Secondly, I have been looking into the technical solutions for implementing the hydroponic growing environment. As I wrote, I have considered building my own ‘hempy bucket’ system. However, I kept thinking about root rot, fungus and other risks: in this kind of bucket system, there is always some fertilising liquid just standing in the water reservoir. The standing water provides ideal conditions for algae growth. Stagnate water system can cause lack of oxygen; build-up of salts and decomposing algae can produce toxins. I am not sure how significant those risks are (there are many hempy bucket gardeners who appear perfectly happy with their low-cost systems), but currently I am inclining more towards a commercial passive hydroponics system that also includes some kind of water valve: the idea here is, that the water valve will allow automatic, periodic watering of the growing media (and the root system), but also flush the water away as completely as possible, so that no similar stagnate water reservoir would be in the pots, as in the hempy bucket option. There are at least two models that are widely available and used: AutoPot and PLANT!T GoGro. I am not sure if there is much fundamental different between these two – GoGro appears to be more widely available to where I am living, but some gardeners appear to consider AutoPot (the original, older system) as more robust and a bit more sophisticated.

LED strip (Nelson Garden 23W).

Thirdly, I need to find a plant light solution that works. Currently, the tiny seedlings can nicely fit below the small LED plant light system that I have been long using. However, doing some hydroponic gardening indoors (before the greenhouse season starts) means that I need to be ready to provide enough, and right kinds of light for growing plants. We had an old fluorescent tube lamp, left from Laura’s old aquarium. That lamp was, however, too large and heavy for my needs, and I was also a bit suspicious how safe (in electronic terms) a 10+ year-old lamp setup would be today. Some chili gardeners appear to be using rather expensive, “hi-fi lamps” where different high-intensity discharge lamps (HIDs) have taken over from older incandescents and fluorescent tube lamp systems. Ceramic metal halide lighting and full-spectrum metal halide lighting are used to create powerful light with large amounts of blue and ultraviolet wavelengths that are good for plant growth. The price of good lamps of this kind can be rather high, however. I decided to go for a lightweight but plant-optimised LED system that was a comparably budget-friendly option. I am now setting up four 23W LED strips that were sold as Nelson Garden LED plant light (No.1 and No.2 systems use the same power transformer). Each LED strip is 85 cm long, is specified for 6400 K light temperature, and should provide 2200 lumen, or, more precisely, PPFD (100 mm) 570 µmol/s/m² of lighting power. Having four of those should be enough for four AutoPot style chili growing stations, at least in the early phases of gardening, I think. I am still thinking about how to suspend and adjust these LED strips to correct height above the plants. I am doing this pre-growing phase in my home office corner, in the basement, and e.g. the ceiling panels do not allow attaching anything into them.

Measuring the nutrients.
Measuring the nutrients.

Finally, the choice of growing medium has also an effect on the style of fertilisers to use, and most hydroponic gardeners invest to both EC and pH meters and adjustment solutions, in order to control the salts and acidity levels in the nutrient solution, and to adjust the values in different stages of growth, bloom and fruit production. Some do not take this so seriously, and just try to follow some fertiliser manufacturer’s guidelines and make no measurements at all, just trying to monitor how plants look like. Some study this very scientifically, measuring and adjusting various nutrients, starting from the “key three”: Nitrogen (N), Phosphorus (P) and Potassium (K), which are commonly referred to as the fertilizing products’ NPK value. All these three are needed: nitrogen boosts growth, phosphorous is needed by plant for photosynthesis, cell communication and reproduction; and potassium is crucial for plant’s water regulation. But there are also “micronutrients” (sometimes called “trace elements”) that are needed in smaller amounts, but which still are important for healthy growth – these include, e.g. magnesium. Popular fertilisers for hydroponic gardening often come in multiple components, where e.g. the mixtures for growth, bloom and then the micronutrients are sold and apportioned separately. It is possible to find quite capable all-in-one fertiliser products, however. I am currently planning of using coco coir (neutral side-product of coconut manufacturing) as the growing medium, so I picked “Canna Coco A+B” by Canna Nutrients as my starting hydroponic fertiliser solution. I also bought a simple pH tester for checking the acidity of fertilising solution, and I probably should also invest in a reliable EC meter, at some point. The starting solution for seedlings should be very mild in any case, to avoid over-fertilising.

Testing the pH of our tap water.
Testing the pH of our tap water.

Hydroponics?

I have done my chili gardening so far only with traditional, soil-based methods. The results have been varied, and there seems to be the constant threat of pests, plant diseases, or improper amounts of water and nutrients while working with soil. I am not completely sure how real this observation is, but I think I have noticed that e.g. soil-based chili growing is something that some of the more passionate hobbyists have long left behind. After moving into hydrophonics (where nutrients and oxygen are moved with water flow to plant roots), then to aeroponics (use of moist air to nourish hanging root systems), some even have made use of the NASA experiments in the International Space Station to create “high pressure aeroponics” or ultrasonic “fogponics” systems, where very small, 50 micron droplet size is utilised, to stimulate the growth of fine root hairs (trichoblasts) that maximise the surface area of root system, and produce optimal crop yield with minimal amounts of water and nutrients. The related high-pressure pumps and misting nozzle systems are interesting in engineering sense, I admit.

The first seedlings, spring 2019.

I was personally merely considering the more prosaic “bucket bubbler” hydroponics setup, but even that proved a bit problematic in my case. (There is no electric line running into our greenhouse, where I was planning these hydroponic bubblers to be situated.) Thus, I have now turned towards “passive hydroponics”, which is probably the oldest way this has been applied: growing plants without soil. The version that I am now aiming at is internationally known as a “hempy bucket” method: a black/dark bucket is filled with a 3 parts perlite and 1 part vermiculite mix, where the chili seedling is planted. There needs to be a drill hole for excess water down in the bucket, at c. 2 inches (or c. 5 cm) from the bottom. One then waters the plant with a nutrient, hydroponic solution every other day, until the roots grow and reach the water reservoir at the bottom part of the bucket. The solution watering is then reduced a bit, to twice a week. The water reservoir, bucket microclimate and perlite-vermiculite substrate keeps the upper roots supported, nourished and moist, while also providing nice amounts of oxygen, while the submerged, lower parts of the roots deliver the plant plenty of water and nutrients. The final outcome should be a better and more controlled growing environment than what can be reached in typical soil-based gardening.

For more, see e.g.

Chilies: May 2017 update

2017-05-21 13.06.31-1
Tepin x Lemon Drop hybrid is the tallest plant at the moment. It has also started to bear fruit, already!

I have been growing a variety of chili peppers for a few years now, and the most of summers 2015 and 2016 were spent building and then testing the Juliana greenhouse that we use for extending the warm season here in Finland. This year however, April was the coldest in record, and there was no point in taking plants outdoors, when it would had just meant having the electric heater working around the clock (which means: expensive chilies!) Now, at the end of May, it finally looks like the unseasonal snow storms could be behind us (knocking on wood…) and this weekend has been the one when the greenhouse has been set up for business, most of the chilies have moved into bigger pots, while there has been also plenty of other work going on in our garden.

As I wrote earlier, I tried out the simple Ikea hydroponic system in germination and sapling phases. The early steps worked very well, and it seems that for indoor chili growing the setup is good for these first steps. However (partially due to the deferred Spring), I kept the saplings too long in the hydroponic setup – if large plants like chilies are grown in hydroponic manner, it needs to have a water pump installed, that keeps the nutritious water flowing over the roots, rather than just soaking them. I did not have the pump, and ended up in troubles, with growth of some plants suffering, and even losing a couple of important chili varieties. I moved the remaining plants into soil and pots in early April, if I remember correctly, but I should had done that much earlier. The growth was strong after the move, even while growing plants had to get along on the windowsill, without any extra plant lights from that onwards.

2017-05-21 13.07.31
Scorpion, one from Messukylä school sale.

Luckily, there was the school yard sale in the local Messukylä school, where again hundreds of plants, dozens of chilies included, were available, so I could supplement my selection. I lost all my Aji varieties, and both of my extra hot varieties, “7 pot Brain Strain Yellow” and the Bhut Jolokia. But from the school sale I managed to get both a new Bhut Jolokia, as well as a Moruga Scorpion – both traditionally top of the line, as long as heat is measured. And there were also a couple of interesting habanero varieties that I picked up, as well as something that was called “Jalapeno Hot”. I have only tried rather mild japapenos so far, so it is interesting to see how that will turn out.

Here are some photos from the chilies at this point, 21st May: the school yard saplings are much smaller than the ones that I had grown in hydroponics and then in pots starting in January. The “Naga” (Bhut Jolokia) is particularly small, hopefully it will survive the move into a larger pot, it does not have particularly strong roots yet.

2017-05-21 13.10.13
My “Madame Jeannette” habanero is growing strong, though still indoors.

2017-05-21 13.11.29
Pequin Firecracker is also making nice growth right now, it should move to the greenhouse in near future, I think.

Talking about roots, I try this time using a specific commercial nutritient, Biobizz “Root Juice”: it is an organic “root stimulator” designed to boost root growth. As I had a gift voucher to a local chili gardeners’ store (thanks, Gamelab colleagues!), I have now also other nutritients to try – sticking to Biobizz products, per shopkeeper’s advice in soil based chili cultivation.

2017-05-21 12.53.25
“Root Juice”.

2017-05-20 17.38.49
My other tools in testing: “Top-Max”, “Bio-Bloom”, “Bio-Grow” by Biobizz (company is originally from the Netherlands), and also the Finnish classic, “Jaakon taika” (a photosynthesis booster).

2017-05-21 12.22.23
Gardening can provide many rewards.

xx

Hydroponic chilies, pt. 2

My experiment with the Ikea hydroponics system has now produced a nice selection of small chili seedlings. The next step is moving them from the nursery box into the cultivation kit. Below are some photos: the idea is to completely bury the stone wool “starter plug” (now penetrated by chili roots) into coarse pumice stone pieces, within perforated cultivation pots. After those are placed into the cultivation kit, one just needs to fix the kit with a mix of fertilizer and water in suitable ratio (half capful into 4 liters of water is Ikea’s own Växer recommendated ratio, I did put in a bit more).  Those pots which are not in use should be covered with provided lids, as this prevents algae growth in the kit. The pumice stone gravel absorbs the liquid, providing chili seedlings with both water, nutritients, and access to air. Let’s see how this goes on from this…

New chili season, 2017

In January, it is again time to sow the seeds for 2017 chili crops. This time, I have a theme: colour ‘yellow’. Well, almost all my chilies this season are yellow, but not quite, as you can notice from below.

Another new concept this year for me is hydroponics. The idea of hydroponic gardening is to use no soil, but rather just expose plants to water, nutrients and sunlight. The plants’ roots will be circulated by a mineral solution, and there is some supportive, non-organic material used to keep the plants growing up in firm position.

I will most likely not develop a full hydroponic system when these chilies move to our greenhouse, but I will try it out in the germinating and seedling growing phases. To make things as easy (and as cost-effective) as possible, I got the entire system from IKEA. They have also some videos about the hydroponic indoor gardening and the techniques and materials they had chosen in their website at: http://www.ikea.com/gb/en/products/indoor-gardening/.

IKEA shopping
IKEA shopping…

The germination process is handled with a simple tray with holes, some plugs made of stone wool (a fibrous mineral material), a water box below, and protective plastic cover with some air ventilation holes.

IKEA nursery box
IKEA nursery box.

As not all seeds germinate, it is a good idea to put 2-3 seeds per plug.

Chili seeds on stone wool plugs
Chili seeds on stone wool plugs.

The optimal temperature for most chili varieties’ germination is around 27-29 Celsius degrees, so I use an electric warming mat below the nursery to keep the temperature even. There is also a LED light with plants’ wavelengths in the IKEA system, the cultivation insert set for seedling phase is intended to be combined with the pumice stone (volcanic rock from Iceland), which allows roots support and access to hydroponic growing solution, while also allowing airflow to the plant roots.

IKEA cultivation insert set for hydroponics
IKEA cultivation insert set for hydroponics.

This time, the chili varieties I chose for growing are: Pequin Firecracker (c. annuum), a hybrid Tepin x Lemon Drop (c. annuum x baccatum), 7 Pot Brain Strain Yellow (c. chinense), Lemon Drop (c. baccatum), Goat’s Weed (c. annuum), Peito de Moca (c. chinense), Bhut Jolokia (which is now classified as a c. chinense x frutescens hybrid from India?), Aji Cristal (c. baccatum), Aji Fantasy (a commercial Finnish c. baccatum hybrid of Lemon Drop x PI 441551), a non-specified ‘Thai’ chili variety (c. annuum), Habanero Hot Lemon (c. chinense), Fatalii (c. chinense), and my old favourite, yellow Madame Jeanette (c. chinense, a habanero chili from Suriname). Old familiar ones, and new acquaintances. Happy new chili season, all fellow chili-heads!

Chili growing is a multi-form hobby
Chili growing is a multi-form hobby.

PS. Here is also a cheerful video by IKEA about the joys of hydroponics: